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Following earlier evidence for chaotic tim e behaviour in the open flow continuous stirred 
Belousov-Zhabotinskii reaction based on a single measured observable, now two-dimensional 
phase plots are presented. The potential of a bromide ion sensitive electrode was plotted against 
the electrochemical potential. In  the two-dimensional observation space obtained, both apparent 
limit cycle oscillations and apparent chaotic oscillations were observed. Of the latter, type 1 resem­
bles a double-limit cycle system with fluctuation-triggered transitions between the two regimes 
(exogenous chaos); type 2 is analogous, bu t here the irregular transition between the two oscilla­
tory regimes gives the impression of being, in principle, independent of exogenous noise. I f  so, 
this flow may be related to one of the chaotic flows with saddle point known (for example, the 
Lorenz attractor). Type 3, only observed as a transient so far, looks like a two-dimensional projec­
tion of screw type chaos, which is one of the simplest types of deterministic chaos. Type 4 corres­
ponds either to a fluctuation-triggered monoflop (exogenous chaos) or to folded-strip (spiral) tvpe 
chaos.

1. Introduction

Nonlinear deterministic continuous oscillators of 
more than two variables are in many cases capable 
of more complicated types of oscillations beyond 
the ordinary limit cycle. The most prominent class 
of complicated oscillations became known recently 
under the name of “chaos” [1 ] (cf. [2]). Chaotic 
oscillations are characterized [1 ] (a) by the presence 
of an infinite number of (mostly unstable) periodic 
solutions plus an uncountable number of non- 
periodically oscillating solutions and (b) by the 
phenomenon of “hyperbolicity” , meaning that 
closely adjacent initial conditions lead to rapidly 
diverging trajectories for most initial conditions. 
An example is Lorenz’s “butterfly effect” which 
states that even if the equations and initial condi­
tions determining the weather were known with 
absolute accuracy, so that the future time course 
could be computed in principle, a single wing- 
clapping by a butterfly would suffice to render the 
future time course completely different [3]. The 
oldest example of chaos is the well-known “analyti­
cally insoluble” restricted three-body problem of 
celestial mechanics (see [4] for a recent account).
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The simplest everyday example of a chaotic oscilla­
tion is the irregularly dripping faucet [5 ],

A first three-variable abstract reaction system 
capable of chaotic oscillations was proposed in [6 ]. 
This system at the same time can be considered as 
a “blown-up” version of an earlier described
2-variable qualitative model of the Zhabotinskii 
reaction [7]. For a somewhat more complicated 
alternative blowing up of the same equation, see [8 ]. 
Both models yield spiral type chaos [9].

Like the simplest spiral-type chaos producing 
equation [10, 2], the simplified models of the Zhabo­
tinskii reaction mentioned probably can produce 
screw-type chaos too. More complicated — and 
more realistic — models of the Zhabotinskii reaction 
may exhibit additional (known and unknown) types 
of chaos. A seven-variable model with complicated 
oscillations (although not chaos so far) has been 
simulated recently [1 1 ].

The rate equations of the Belousov-Zhabotinskii 
reaction are known in great detail [1 2 ], although 
the range of a few parameters has yet to be deter­
mined. In spite of this almost complete chemical 
eludication. the qualitative dynamics implicit in 
the equation are still largely unknown. This is not 
astonishing, however, since establishing a complete 
catalog of the possible types of qualitative behavior 
of a given nonlinear system (called the “logos” of
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th a t system [13]) is exceedingly difficult. Moreover, 
the proneness of most nonlinear systems to exhibit­
ing chaotic oscillations was virtually unsuspected 
until recently, although, according to Lefschetz
[14], Poincare (who discovered the phenomenon) 
knew about its prevalence. In  reaction kinetics, the 
earliest prediction concerned “strange attractors”
[15] (on the basis of four coupled oscillators; for 
two simpler cases, see [16]. So it is not astonishing 
that the first evidence of chaos (or at least a compli­
cated limit cycle) in the Zhabotinskii reaction, re­
ported under the name of a “double frequency 
mode” of oscillation [17], went unnoticed.

Chaos in the Zhabotinskii reaction was first 
explicitly described by Schmitz et al. [18]. The 
authors proposed applicability of the principle of 
spiral-type chaos [6 ] for explaining certain com­
plicated x — t plots which they had been unable to 
interpret before due to lack of a theoretical paradigm 
[19].

Unaware of these experimental observations, we 
attem pted to verify the prediction made in [6 ] 
that a chaotic mode should be easy to find in the 
Zhabotinskii reaction. A first irregular time course 
found was tentatively interpreted as an example 
of screw-type chaos [2 0 , 2 1 ] and the necessity of 
further experimental work involving more than a 
single measured variable was stressed [2 1 ].

In the following, we present a set of two-dimen- 
sional plots (first presented in [2 2 ]) which allow us 
to address in somewhat greater detail the two 
main questions that are still open: (1) Is “potentially 
endogenous” chaos possible in the Zhabotinskii 
reaction ? (2) If  so, to which type or types does it 
belong ?

2. Materials and Methods

All chemicals used were analytical grade obtained 
from Merck, Darmstadt. The concentration of 
reactants was 1.8 x 10~ 3 M MnSÜ4 , 0.36 M malic 
acid, 0.015 M KBr0 3 , and 1.83 M H 2SO4 [23]. The 
reaction was started by rapid mixing of a solution I 
(containing per liter 0.34 g MnS0 4  • H 2O, 54 g malic 
acid, and 200 g H 2 SO 4 ) and a solution II  (23.3 g 
KBr(>3 per liter distilled H 2O) in a ratio of 50:6. 
The two solutions were then continuously injected 
with a peristaltic pump (Pharmacia P-3) a t that 
same ratio. The flow rates are indicated in the 
figure legends. The volume of the reaction mixture 
was 36 ml and it was kept constant by an overflow

mechanism. During the whole experiment the 
reaction mixture was agitated by a magnetic 
stirrer. The temperature was kept constant 
(=l=0.05oC) at the values given in the figures. The 
electrochemical potential was determined with a 
platinum electrode. A bromide ion selective solid 
state electrode (Br-125, TOA Electronics Ltd., 
Tokyo) was used for the second observable. An 
Ag/AgCl electrode was used as common reference 
for both potentials. An HP 7005 B X-Y analog 
recorder was used. The voltage amplification factor 
was the same in all figures (see Fig. 5 for calibration 
bars).

3. Results

In Fig. 1, an oscillation of limit cycle type is 
presented. The picture apparently corresponds to 
a single-looped limit cycle in n space, projected on­
to a plane. The upper right-hand corner seems to 
correspond to a tilted portion (side view). There 
is a certain amount of “noise” in the picture.

The picture shown in Fig. 2 looks similar for the 
greater part of the oscillatory cycle. However, the 
trajectory went along a different, apparently also 
well defined path two times during the observation 
interval, whereby the incident could not predicted. 
The picture thus seems to imply that there is a 
separatrix between two stable paths (a pseudo- 
separatrix in the sense of FitzHugh [24] would also

Fig. 1. “ Limit cycle” . Two-dimensional plot of electro­
chemical potential (abscissa) vs. potential of a bromide ion 
sensitive electrode (ordinate) in the well-stirred Belousov- 
Zhabotinskii reaction under isothermal open flow condi­
tions. Scaling as in Figure 5. Flow rate: 2.7 ml/min, 
tem perature: 3 0 °C. Bromate concentration: 0.045 M/I. 
Other values as described in Section 2. The system had 
been run a t the same flow rate for two hours before the 
measurement was taken.
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Fig. 2. “Double limit cycle” . Scaling as in Fig. o. P aram ­
eters as in Section 2. Flow rate: 1.9 ml/min, tem perature: 
24 °C. The system had been run a t a slightly lower flow 
rate until one hour before this plot was made (stationary 
regime) [29].

be sufficient). If the separatrix comes close enough 
to the main path (limit cycle) at one point during 
the oscillatory cycle, exogenous fluctuations suffice 
to throw the system’s representative state over 
into the adjacent basin (or quasi-basin) from time 
to time. The result is a kind of “pseudo-chaos” , 
since the corresponding deterministic system would 
not show it.

Figure 3 shows a related regime. This time, 
however, a “continuous curtain” of transitions is

Fig. 3. “ Endogenous chaos” . Conditions as in Figure 2. 
Flow rate: 1.7 ml/min, tem perature: 22.8°C. Stationary 
regime.

observed in the right-hand portion of the picture. 
At the same time, the formation of a multiply 
folded “screw-like” transition is evident in the left- 
hand part of the picture. Even though exogenous 
fluctuations are still present, a picture like this can 
probably also be generated “endogenously” , that 
is, deterministically. The flow seems to take place 
on a folded 2 -dimensional manifold in state space. 
Nonetheless, this suggested picture is still rather 
complicated when compared with that of a simple 
example of deterministic chaos (see Fig. 12 in Ref.
[2]). A flow like that of Fig. 3, but produced deter­
ministically, would have to be classified as an 
example of “composite” chaos (see Ref. [2], Fig. 14 
for several 3-variable examples).

Figure 4 shows a measured curve that looks fairly 
similar to the ideal case of screw-type chaos (cf. 
Fig. 13 in Ref. [9]). Unfortunately, this regime was 
observed as a transient only: it occurred 2 0  minutes 
after changing the flow rate from 2.0 to 6.7 ml/min 
and lasted 10 minutes. I t  may nonetheless corre­
spond to a regime that can be evoked at a fixed set 
of parameters also: Following so relatively long a 
time ( 2 0  minutes) after a change of flow rates, the 
remaining automatic readjustment of parameters 
has become rather slow already. Therefore, there is 
a chance that a stationary configuration of param ­
eters yielding the same behaviour may be found.

Figure 5 finally shows an irregular motion that is 
not easily interpretable. The picture may correspond 
to a monoflop (excitable) state of the system. 
(Excitable behaviour in the Zhabotinskii reaction 
was first observed by Winfree [25].) The motion 
was indeed somewhat slower in the upper right- 
hand corner so that presence of an excitable stable

Fig. 4. “ Screw type chaos” . (Transient). Conditions as in 
Fig. 2. Flow rate: see text. Temperature: 22.3°C.
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Fig. 5. “ Exogenous chaos" of monoflop type (or, a lter­
natively, endogenous folded-strip type chaos). Conditions 
as in Figure 2. Flow rate: 2.2 ml/min. Temperature: 
22.8°C. Stationary regime. Scaling: Both calibration bars 
have a length of 10 mV. The right-hand one is located 
a t about — 150 mV, the left-hand one around 500 mV. 
More positive values point downward or to the right, 
respectively.

steady state in this region cannot be excluded; in 
this case the observed varying amplitudes of 
excursion would be caused by the varying size of the 
triggering fluctuations. However, the smoothness 
of the curves in the right-hand corner speaks against 
such an interpretation, since excitable steady states 
usually look different, more “scrambled” , in these 
plots [26].

An alternative explanation therefore postulates 
that an oscillation takes place on a smooth 2 -dimen­
sional submanifold or strip in state space, the right- 
hand corner corresponding to a lateral view of the 
strip. The varying size of the excursions could then 
be explained by the presence of a lateral “folding 
over” of the strip, such that a combination of a 
Möbius strip with an ordinary strip results [6 ]. Such 
folded-strip type chaos has indeed been observed in
3-variable deterministic equations [2], I t  is top­
ologically equivalent to spiral type chaos [6 ].

The last proposed explanation of Fig. 5 is 
supported by the fact that successive excursions 
statistically tend to be of opposite amplitudes. If 
this interpretation is right, the role of exogenous 
noise mainly consists in blurring the next amplitude 
law (successive amplitudes being a non-monotone 
function of the last amplitude) that is characteristic 
of spiral type chaos [6 ], As Fig. 6  shows, successively 
recorded “amplitudes” (obtained from Fig. 5 as 
successive maximum deviations in a “south­
westerly” direction), when they are plotted each as
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Fig. 6. “N ext-am plitude m ap” for the flow of Fig. 5 (see 
text). The dashed line is not a calculated curve.

a function of the last, may give the impression of an 
underlying non-monotonic curve that is masked by 
external noise. The present Figure, however, is 
much less convincing than an analogous curve that 
was obtained earlier for a different chemical 
oscillator, viz. the horseradish peroxidase (Yama- 
zaki) oscillator, on the basis of a single measured 
time curve [27].

4. Conclusion
To prove that “endogenous” chaos is possible in 

the Zhabotinskii reaction, at least three appropriate 
observables are required. In addition, a low noise 
level is desirable. If  then one of the typical chaos- 
producing two-dimensional submanifolds in state 
space [2 ] were detectable (although necessarily 
blurred), the question whether the observed 
“chaotic” regime would remain the same in the 
absence of external noise would become academic. 
That is to say, the existence of chaos can, in 
principle, be made probable by experiment to a 
degree which comes close to an empirical proof. 
However, only certain simple types of chaos can be 
empirically identified easily in this way. Diagnostic 
criteria for the presence of endogenous chaos can 
therefore only be of the “sufficient” type.

The preliminary results obtained so far seem to 
justify further experimentation. They also call for 
more detailed numerical investigations of the 
available rate equations and simplified models of 
the Zhabotinskii reaction [28].
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