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Following earlier evidence for chaotic time behaviour in the open flow continuous stirred
Belousov-Zhabotinskii reaction based on a single measured observable, now two-dimensional
phase plots are presented. The potential of a bromide ion sensitive electrode was plotted against
the electrochemical potential. In the two-dimensional observation space obtained, both apparent
limit cycle oscillations and apparent chaotic oscillations were observed. Of the latter, type 1 resem-
bles a double-limit cycle system with fluctuation-triggered transitions between the two regimes
(exogenous chaos); type 2 is analogous, but here the irregular transition between the two oscilla-
tory regimes gives the impression of being, in principle, independent of exogenous noise. If so,
this flow may be related to one of the chaotic flows with saddle point known (for example, the
Lorenz attractor). Type 3, only observed as a transient so far, looks like a two-dimensional projec-
tion of screw type chaos, which is one of the simplest types of deterministic chaos. Type 4 corres-
ponds either to a fluctuation-triggered monoflop (exogenous chaos) or to folded-strip (spiral) type
chaos.

1. Introduetion The simplest everyday example of a chaotic oscilla-
tion is the irregularly dripping faucet [5].

A first three-variable abstract reaction system
capable of chaotic oscillations was proposed in [6].
This system at the same time can be considered as
a “‘blown-up” version of an earlier described
2-variable qualitative model of the Zhabotinskii
reaction [7]. For a somewhat more complicated
alternative blowing up of the same equation, see [8].
Both models yield spiral type chaos [9].

Like the simplest spiral-type chaos producing
equation [10, 2], the simplified models of the Zhabo-
tinskii reaction mentioned probably can produce
screw-type chaos too. More complicated — and
more realistic — models of the Zhabotinskii reaction
may exhibit additional (known and unknown) types
of chaos. A seven-variable model with complicated
oscillations (although not chaos so far) has been
simulated recently [11].

The rate equations of the Belousov-Zhabotinskii
reaction are known in great detail [12], although
the range of a few parameters has yet to be deter-
mined. In spite of this almost complete chemical
eludication, the qualitative dynamics implicit in
the equation are still largely unknown. This is not
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Nonlinear deterministic continuous oscillators of
more than two variables are in many cases capable
of more complicated types of oscillations beyond
the ordinary limit cycle. The most prominent class
of complicated oscillations became known recently
under the name of “chaos” [1] (cf. [2]). Chaotic
oscillations are characterized [1] (a) by the presence
of an infinite number of (mostly unstable) periodic
solutions plus an uncountable number of non-
periodically oscillating solutions and (b) by the
phenomenon of “hyperbolicity”, meaning that
closely adjacent initial conditions lead to rapidly
diverging trajectories for most initial conditions.
An example is Lorenz’s “butterfly effect” which
states that even if the equations and initial condi-
tions determining the weather were known with
absolute accuracy, so that the future time course
could be computed in principle, a single wing-
clapping by a butterfly would suffice to render the
future time course completely different [3]. The
oldest example of chaos is the well-known “‘analyti-
cally insoluble” restricted three-body problem of
celestial mechanics (see [4] for a recent account).
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that system [13]) is exceedingly difficult. Moreover,
the proneness of most nonlinear systems to exhibit-
ing chaotic oscillations was virtually unsuspected
until recently, although, according to Lefschetz
[14], Poincaré (who discovered the phenomenon)
knew about its prevalence. In reaction kinetics, the
earliest prediction concerned ‘‘strange attractors”
[15] (on the basis of four coupled oscillators; for
two simpler cases, see [16]. So it is not astonishing
that the first evidence of chaos (or at least a compli-
cated limit cycle) in the Zhabotinskii reaction, re-
ported under the name of a “double frequency
mode” of oscillation [17], went unnoticed.

Chaos in the Zhabotinskii reaction was first
explicitly described by Schmitz et al. [18]. The
authors proposed applicability of the principle of
spiral-type chaos [6] for explaining certain com-
plicated  —t plots which they had been unable to
interpret before due to lack of a theoretical paradigm
[19].

Unaware of these experimental observations, we
attempted to verify the prediction made in [6]
that a chaotic mode should be easy to find in the
Zhabotinskii reaction. A first irregular time course
found was tentatively interpreted as an example
of screw-type chaos [20, 21| and the necessity of
further experimental work involving more than a
single measured variable was stressed [21].

In the following, we present a set of two-dimen-
sional plots (first presented in [22]) which allow us
to address in somewhat greater detail the two
main questions that are still open: (1) Is “potentially
endogenous’ chaos possible in the Zhabotinskii
reaction ¢ (2) If so, to which type or types does it
belong ?

2. Materials and Methods

All chemicals used were analytical grade obtained
from Merck. Darmstadt. The concentration of
reactants was 1.8 x 103 M MnSOy4. 0.36 M malic
acid, 0.015 M KBrOgs, and 1.83 M H»SO04 [23]. The
reaction was started by rapid mixing of a solution I
(containing per liter 0.34 ¢ MnSO, - Ho0, 54 ¢ malic
acid, and 200 g HoS04) and a solution II (23.3 ¢
KBrOsz per liter distilled H20) in a ratio of 50:6.
The two solutions were then continuously injected
with a peristaltic pump (Pharmacia P-3) at that
same ratio. The flow rates are indicated in the
figure legends. The volume of the reaction mixture
was 36 ml and it was kept constant by an overflow
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mechanism. During the whole experiment the
reaction mixture was agitated by a magnetic
stirrer. The temperature was kept constant
(4+0.05°C) at the values given in the figures. The
electrochemical potential was determined with a
platinum electrode. A bromide ion selective solid
state electrode (Br-125, TOA Electronics Ltd.,
Tokyo) was used for the second observable. An
Ag/AgCl electrode was used as common reference
for both potentials. An HP 7005 B X-Y analog
recorder was used. The voltage amplification factor
was the same in all figures (see Fig. 5 for calibration
bars).

3. Results

In Fig. 1, an oscillation of limit cycle type is
presented. The picture apparently corresponds to
a single-looped limit cycle in n space. projected on-
to a plane. The upper right-hand corner seems to
correspond to a tilted portion (side view). There
is a certain amount of “noise” in the picture.

The picture shown in Fig. 2 looks similar for the
greater part of the oscillatory cycle. However, the
trajectory went along a different. apparently also
well defined path two times during the observation
interval, whereby the incident could not predicted.
The picture thus seems to imply that there is a
separatrix between two stable paths (a pseudo-
separatrix in the sense of FitzHugh [24] would also

Fig. 1. “Limit cycle”.

Two-dimensional plot of electro-
chemical potential (abscissa) vs. potential of a bromide ion
sensitive electrode (ordinate) in the well-stirred Belousov-
Zhabotinskii reaction under isothermal open flow condi-
tions. Scaling as in Figure 5. Flow rate: 2.7 ml/min,

temperature: 30°C. Bromate concentration: 0.045 M/L.
Other values as described in Section 2. The system had
been run at the same flow rate for two hours before the
measurement was taken.
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Fig. 2. “Double limit cycle”. Scaling as in Fig.5. Param-
eters as in Section 2. Flow rate: 1.9 ml/min, temperature:
24°C. The system had been run at a slightly lower flow
rate until one hour before this plot was made (stationary
regime) [29].

be sufficient). If the separatrix comes close enough
to the main path (limit cycle) at one point during
the oscillatory cycle, exogenous fluctuations suffice
to throw the system’s representative state over
into the adjacent basin (or quasi-basin) from time
to time. The result is a kind of “‘pseudo-chaos”,
since the corresponding deterministic system would
not show it.

Figure 3 shows a related regime. This time,
however, a ‘“‘continuous curtain’ of transitions is

Fig. 3. “Endogenous chaos”. Conditions as in Figure 2.
Flow rate: 1.7 ml/min, temperature: 22.8°C. Stationary
regime.
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observed in the right-hand portion of the picture.
At the same time, the formation of a multiply
folded “‘screw-like” transition is evident in the left-
hand part of the picture. Even though exogenous
fluctuations are still present, a picture like this can
probably also be generated “‘endogenously”, that
is, deterministically. The flow seems to take place
on a folded 2-dimensional manifold in state space.
Nonetheless, this suggested picture is still rather
complicated when compared with that of a simple
example of deterministic chaos (see Fig. 12 in Ref.
[2]). A flow like that of Fig. 3, but produced deter-
ministically, would have to be classified as an
example of “composite’ chaos (see Ref. [2], Fig. 14
for several 3-variable examples).

Figure 4 shows a measured curve that looks fairly
similar to the ideal case of screw-type chaos (cf.
Fig. 13 in Ref. [9]). Unfortunately, this regime was
observed as a transient only: it occurred 20 minutes
after changing the flow rate from 2.0 to 6.7 ml/min
and lasted 10 minutes. It may nonetheless corre-
spond to a regime that can be evoked at a fixed set
of parameters also: Following so relatively long a
time (20 minutes) after a change of flow rates, the
remaining automatic readjustment of parameters
has become rather slow already. Therefore, there is
a chance that a stationary configuration of param-
eters yielding the same behaviour may be found.

Figure 5 finally shows an irregular motion that is
not easily interpretable. The picture may correspond
to a monoflop (excitable) state of the system.
(Excitable behaviour in the Zhabotinskii reaction
was first observed by Winfree [25].) The motion
was indeed somewhat slower in the upper right-
hand corner so that presence of an excitable stable

Fig. 4. “Screw type chaos”. (Transient). Conditions as in
Fig. 2. Flow rate: see text. Temperature: 22.3 °C.
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Fig. 5. “Exogenous chaos™ of monoflop type (or, alter-
natively, endogenous folded-strip type chaos). Conditions
as in Figure 2. Flow rate: 2.2 ml/min. Temperature:
22.8°C. Stationary regime. Scaling: Both calibration bars
have a length of 10 mV. The right-hand one is located
at about — 150 mV, the left-hand one around 500 mV.
More positive values point downward or to the right,
respectively.

steady state in this region cannot be excluded: in
this case the observed varying amplitudes of
excursion would be caused by the varying size of the
triggering fluctuations. However, the smoothness
of the curves in the right-hand corner speaks against
such an interpretation, since excitable steady states
usually look different, more “‘scrambled”, in these
plots [26].

An alternative explanation therefore postulates
that an oscillation takes place on a smooth 2-dimen-
sional submanifold or strip in state space, the right-
hand corner corresponding to a lateral view of the
strip. The varying size of the excursions could then
be explained by the presence of a lateral ““folding
over”’ of the strip, such that a combination of a
Mébius strip with an ordinary strip results [6]. Such
folded-strip type chaos has indeed been observed in
3-variable deterministic equations [2]. It is top-
ologically equivalent to spiral type chaos [6].

The last proposed explanation of Fig.5 is
supported by the fact that successive excursions
statistically tend to be of opposite amplitudes. If
this interpretation is right, the role of exogenous
noise mainly consists in blurring the next amplitude
law (successive amplitudes being a non-monotone
function of the last amplitude) that is characteristic
of spiral type chaos [6]. As Fig. 6 shows, successively
recorded “‘amplitudes” (obtained from Fig.5 as
successive maximum deviations in a “‘south-
westerly” direction), when they are plotted each as
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Fig. 6. “Next-amplitude map’” for the flow of Fig. 5 (see
text). The dashed line is not a calculated curve.

a function of the last, may give the impression of an
underlying non-monotonic curve that is masked by
external noise. The present Figure, however, is
much less convincing than an analogous curve that
obtained earlier for a different chemical
oscillator, viz. the horseradish peroxidase (Yama-
zaki) oscillator, on the basis of a single measured
time curve [27].

was

4. Conclusion

To prove that “endogenous” chaos is possible in
the Zhabotinskii reaction. at least three appropriate
observables are required. In addition, a low noise
level is desirable. If then one of the typical chaos-
producing two-dimensional submanifolds in state
space [2] were detectable (although necessarily
blurred), the question whether the observed
“chaotic” regime would remain the same in the
absence of external noise would become academic.
That is to say, the existence of chaos can, in
principle, be made probable by experiment to a
degree which comes close to an empirical proof.
However, only certain simple types of chaos can be
empirically identified easily in this way. Diagnostic
criteria for the presence of endogenous chaos can
therefore only be of the “sufficient” type.

The preliminary results obtained so far seem to
justify further experimentation. They also call for
more detailed numerical investigations of the
available rate equations and simplified models of
the Zhabotinskii reaction [28].

We thank Art Winfree for discussions.



K. Wegmann and O. E. Rossler - Chaotic Oscillations in the Belousov-Zhabotinskii Reaction

[1] T. Y. Li and J. A. Yorke, Amer. Math. Mth. 82, 985
(1975).

[2] O. E. Rossler, Continuous Chaos. In: Synergetics,
A Workshop (H. Haken, ed.), pp. 184—197. Springer-
Verlag, Berlin 1977.

[3] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

[4] J. Moser, Stable and Random Motions in Dynamical
Systems with Special Emphasis on Celestial Mecha-
nics. Princeton University Press, Princeton 1973.

[5] O. E. Rassler, Chemical Turbulence. — A Synopsis.
In: Synergetics, A Workshop (H. Haken, ed.),
pp. 174—184. Springer-Verlag, Berlin 1977.

[6] O. E. Rassler, Z. Naturforsch. 31a, 259—264 (1976).

[7] O. E. Réssler, J. Theor. Biol. 36, 413—417 (1972).

[8] J. Tyson, preprint, J. Math. Biol. (1978).

[9] O. E. Réssler, J. Math. Biol. 39, 275—289 (1977).
[10] O. E. Réssler, Phys. Letters 57 A, 397—398 (1976).
[11] K. Showalter, R. M. Noyes, and K. Bar-Eli, A Modified

Oregonator Model Exhibiting Complicated Limit
Cycle Behavior in a Flow System. Preprint 1978.

[12] J. J. Field, E. Korés, and R. M. Noyes, J. Amer.
Chem. Soc. 8649—8664 (1972).

[13] R. Abraham, Vibrations and the Realization of Form.
In: Evolution and Consciousness (E.Jantsch and
C. H. Wattington, eds.), pp.134—149. Addison-
Wesley, London, Tokyo 1976.

[14] S. Lefschetz, Geometric Differential Equations: Recent
Past and Proximate Future. In: Differential Equations
and Dynamical Systems (J. H. Hale and J.P. La-
Salle, eds.), pp. 1—14. Academic Press, New York
1976.

[15] D. Ruelle and F. Takens, Commun. Math. Phys. 20,
167 (1971).

[16] O. E. Réssler and P. J. Ortoleva, Strange Attractors
in Three-Variable Reaction Systems, Springer Lecture
Notes in Biomathematics 21, 67 (1978).

1183

[17] V. A. Vavilin, A. N. Zhabotinsky, and A. N. Zaikin,
A Study of a Self-Oscillatory Chemical Reaction I:
The Autonomous System. In: Biological and Bio-
chemical Oscillators (B. Chance, E. K. Pye, A.K.
Ghosh, and B. Hess, eds.), pp. 71—79. Academic
Press, New York 1973.

[18] R. A. Schmitz, K. R. Graziani,
J. Chem. Phys. 67, 3040 (1977).

[19] K. R. Graziani, J.R. Hudson, and R. A.Schmitz,
The Chem. Engng. J. 12, 9 (1976).

[20] O. E. Rossler, Chaos in Realistic Reaction Systems,
Lecture held at the ,,Chemiedozententagung*, Mar-
burg, March 1977.

[21] O. E. Rossler and K. Wegmann, Nature London 290,
89—90 (1978).

[22] O. E. Réssler and K. Wegmann, Different Types of
Chaos in the Belousov-Zhabotinsky Reaction. Lecture
held at the 13th Symposium on Theoretical Chemistry,
Miunster, October 1977.

[23] The value of 5.6 M H2SO4 described in [21] is a
misprint and should read ““1.4”.

[24] R. FitzHugh, Biophys. J. 1, 445 (1961).

[25] A. T. Winfree, Science, Wash. 175, 634 (1972).

[26] An observation first reported by J.C.Roux (per-
sonal communication 1977).

[27] L. F. Olsen and H. Degn, Nature London 267, 177 to
178 (1977).

[28] One straightforward reduced model consists of the
2-variable HBrOs/Br— model of ref. [7], adding Ce3+
or Mn2* (in the role of a constant influx exhaustible
precursor to the autocatalyst) as a third variable.

[29] Added in proof: Two coexisting limit cycles were
also observed by the Bordeaux group (C. Vidal, per-
sonal communication 1978).

and J. L. Hudson,



